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Abstract

We construct a stable high-order finite difference scheme for the compressible Navier–Stokes equations, that satisfy an
energy estimate. The equations are discretized with high-order accurate finite difference methods that satisfy a Summation-
By-Parts rule. The boundary conditions are imposed with penalty terms known as the Simultaneous Approximation Term
technique. The main result is a stability proof for the full three-dimensional Navier–Stokes equations, including the bound-
ary conditions.

We show the theoretical third-, fourth-, and fifth-order convergence rate, for a viscous shock, where the analytic solu-
tion is known. We demonstrate the stability and discuss the non-reflecting properties of the outflow conditions for a vortex
in free space. Furthermore, we compute the three-dimensional vortex shedding behind a circular cylinder in an oblique free
stream for Mach number 0.5 and Reynolds number 500.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Solving the Navier–Stokes equations require vast computer resources for realistic applications. Low-order
methods are the most commonly used for production calculations. However, it is well known that for simpler
problems high-order methods (order P3) are superior to low-order methods in the sense that a given accuracy
can be achieved with much less computer power. (See [1].) The same superiority of high-order methods has
been difficult to show for realistic applications.
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mailto:magnus.svard@gmail.com
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Much of the problems high-order methods have encountered, relate to boundary closures and imposition of
boundary conditions, which often introduce instabilities. For low-order methods, fewer numerical boundary
conditions are needed and they can often be chosen in an intuitive manner without destroying stability.

With this work we describe a scheme that we believe can extend the usefulness of high-order methods to
realistic applications. We will focus on a stable treatment of the far-field boundaries and postpone the discus-
sion of no-slip wall conditions and grid-block interfaces to future articles.

The first step in order to device a stable numerical method is to analyze the well-posedness of the mathe-
matical problem. For smooth solutions to non-linear problems, linear well-posedness implies that small per-
turbations will not grow and the non-linear problem is therefore well-posed. Assuming existence and
uniqueness of solutions, the remaining question is boundedness of the solution, which mainly relates to the
boundary conditions.

The boundary conditions derived in this article are essentially the same as those derived in [3,9], although
we propose a slight generalization. The generalization consists of the addition of a parameter in the boundary
condition, which allows for more flexibility in the stability proofs of the numerical scheme. In addition, we
have not used the simplification of periodicity in the directions tangential to the boundary. We also propose
a novel set of pressure based boundary conditions. These sets of boundary conditions are general results and
not tied to a specific numerical scheme. (See also [2,4–6,3] for other well-posed boundary conditions and proof
of the correct number of boundary conditions to impose.)

Once well-posedness is established, the stability of the discretization is considered, which is the main focus
of this article. We rely on the well-known equivalence theorem [7] for linear problems, which roughly speaking
says that ‘‘a consistent and stable approximation converges to the correct solution as the mesh size goes to
zero’’. Also, in [8] it was shown that linear stability implies stability for the non-linear problem if the solution
is smooth.

The theory and numerical techniques used in this article are based on the Summation-by-Parts (SBP) and
the Simultaneous Approximation Term (SAT) technique for boundary conditions developed in [10–22]. In
[15], stability for SBP–SAT schemes was shown for the one-dimensional Navier–Stokes equations and in
[16] stability for a scalar equation was proven in general curvilinear coordinates.

The main result in this article is a proof of stability for the full three-dimensional Navier–Stokes equations
in curvilinear coordinates and discretized with high-order SBP–SAT finite difference scheme. (In fact, the dis-
cretization is even strictly stable according to the definition in [23].)

2. The Navier–Stokes equations

Let a bar denote a dimensional variable and 1 denote the free-stream values. We non-dimensionalize the
velocities �u1; �u2; �u3 using the speed of sound �a1; the density q ¼ �q=�q1; the temperature T ¼ T=T1; the pressure
p ¼ �p=ð�q1�a2

1Þ and the total energy e ¼ �e=ð�q1�a2
1Þ. k; l are the second and shear viscosity coefficients non-

dimensionalized by �l1. q denotes the heat flux and c is the ratio of the specific heats.
One can derive a few other relations in non-dimensional form: p1 ¼ 1=c, a1 ¼ 1, T1 ¼ 1, q1 ¼ 1,

e1 ¼ 1=ðcðc� 1ÞÞ þM2=2, where Ma denotes the free-stream Mach-number. The equation of state is
qT ¼ cp. Further,
Re ¼ u1q1L
l1

; Ma ¼ u1
a1
¼ u1; Pr ¼ l1cp

j1
are the Reynolds number, Mach number and Prandtl number, respectively. u1 denotes the magnitude of the
free-stream velocity.

We present the governing equations in non-dimensional form and use � ¼ M=Re.
ut þ F x þ Gy þ Hz ¼ 0;

F ¼ F I � �F V ; G ¼ GI � �GV ; H ¼ H I � �HV :
ð1Þ
A superscript I denotes the inviscid portion of the flux and V the viscous part. The solution and fluxes are
defined as follows:
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uT ¼ ðq; qu1; qu2; qu3; eÞ;
ðF IÞT ¼ ðqu1; p þ qu2

1; qu1u2; qu1u3; u1ðp þ eÞÞ;
ðGIÞT ¼ ðqu2; qu1u2; p þ qu2

2; qu2u3; u2ðp þ eÞÞ;
ðH IÞT ¼ ðqu3; qu1u3; qu2u3; p þ qu2

3; u3ðp þ eÞÞ;

ðF V ÞT ¼ 0; sxx; sxy ; sxz; u1sxx þ u2sxy þ u3sxz þ
1

Prðc� 1Þ qx

� �
;

ðGV ÞT ¼ 0; sxy ; syy ; syz; u1syx þ u2syy þ u3syz þ
1

Prðc� 1Þ qy

� �
;

ðH V ÞT ¼ 0; sxz; szy ; szz; u1sxz þ u2syz þ u3szz þ
1

Prðc� 1Þ qz

� �
:

The stress tensor is
sxx ¼ 2l
ou1

ox
þ k

ou1

ox
� ou2

oy
� ou3

oz

� �
;

syy ¼ 2l
ou2

oy
þ k � ou1

ox
þ ou2

oy
� ou3

oz

� �
;

szz ¼ 2l
ou3

oz
þ k � ou1

ox
� ou2

oy
þ ou3

oz

� �
;

syx ¼ sxy ¼ l
ou1

oy
þ ou2

ox

� �
; szx ¼ sxz ¼ l

ou3

ox
þ ou1

oz

� �
;

szy ¼ syz ¼ l
ou2

oz
þ ou3

oy

� �
:

We assume that 3kþ 2l P 0 and in computations we use k ¼ �2l=3. Throughout this paper, u denotes the
conservative variables; v the primitive variables; w the symmetrized variables (after linearization) and c the
characteristic variables (also after linearization).

2.1. Curvilinear coordinates

We introduce the coordinate transformation x ¼ xðn; g; fÞ, y ¼ yðn; g; fÞ and z ¼ zðn; g; fÞ such that
0 6 n; g; f 6 1 and define the Jacobian matrix as
J ¼

ox
on

ox
og

ox
of

oy
on

oy
og

oy
of

oz
on

oz
og

oz
of

0
BB@

1
CCA:
Let detðJÞ ¼ J ; then the Navier–Stokes equations can be recast as
ðJuÞt þ bF n þ bGg þ bH f ¼ 0; ð2Þ

where bF ¼ bF I � �bF V , bG ¼ bGI � �bGV and bH ¼ bH I � � bH V . Furthermore,
bF I ;V ¼ J nxF

I;V þ nyGI ;V þ nzH
I ;V

� �
;bGI;V ¼ J gxF

I ;V þ gyG
I;V þ gzH

I;V
� �

;bH I;V ¼ J fxF
I;V þ fyG

I;V þ fzH
I;V

� �
:

ð3Þ
For a thorough derivation of the transformed Navier–Stokes equations, see [6].

2.2. The linearized Navier–Stokes equations

So far, we have dealt with the non-linear equations in conservative form. We will employ the energy
method to analyze well-posedness of these equations. Therefore, we need a set of linear and symmetric
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equations. We transform the Navier–Stokes equations (1) to primitive variables v ¼ ðq; u1; u2; u3; pÞ and
freeze the coefficients. The tilde sign will denote the time-dependent variable. Variables or matrices without
the tilde are the frozen equivalents. Next, we use the symmetrizing matrices, derived in [24], to obtain a sys-
tem of the form,
~wt þ ðA1w ~w� �ðB11 ~wx þ B12 ~wy þ B13 ~wzÞÞx þ ðA2w ~w� �ðB22 ~wy þ B23 ~wz þ B12 ~wxÞÞy
þ ðA3w ~w� �ðB33 ~wz þ B32 ~wy þ B13 ~wxÞÞz ¼ 0: ð4Þ
Applying the coordinate transformation described above, we arrive at,
ðJwÞt þ ðbF wÞn þ ðbGwÞg þ ð bH wÞf ¼ 0; ð5Þ
where bF w ¼ bF I
w � �bF V

w , bGw ¼ bGI
w � �bGV

w , bH w ¼ bH I
w � � bH V

w , and,
bF I
w ¼ JðnxA1w þ nyA2w þ nzA3wÞu ¼ bA1ww;bGI
w ¼ JðgxA1w þ gyA2w þ gzA3wÞu ¼ bA2ww;bH I
w ¼ JðfxA1w þ fyA2w þ fzA3wÞu ¼ bA3ww:
The exact forms of bF V
w ;
bGV

w and bH V
w are found in [6].

Remark. We would arrive at the same system if we had linearized and symmetrized the system (2)
directly.
3. Well-posedness

Next, we turn to well-posedness of Eq. (4). Let D�n denote the computational domain and K�n its boundary,
and apply the energy method to (5),
0 ¼
Z

D�n

~wT ~wtJ dndgdfþ
Z

D�n

~wTððbF I
wÞn þ ðbGI

wÞg þ ð bH I
wÞfÞdndgdf� �

Z
D�n

~wTððbF V
wÞn þ ðbGV

wÞg

þ ð bH V
wÞfÞdndgdf

¼
Z

D�n

~wT ~wtJ dndgdfþ I1 � �I2; ð6Þ
where
I1 ¼
I

C�n

1

2
~wT bA1w

� �
~w; ~wT bA2w

� �
~w; ~wT bA3w

� �
~w

� �
� n�n ds�n

I2 ¼
I

C�n

~wTbFV ds�n � DI :
ð7Þ
where n�n ¼ ðnn; ng; nfÞ denotes the outward pointing normal and ds�n a surface element in �n-space. Further,bFV ¼ bF V
wnn þ bGV

wng þ bH V
wnf. DI is a quadratic term in the derivatives of w (see [6]) and is positive semi-

definite. We introduce the computational space D�n as 0 6 n 6 1, 0 6 g 6 1, 0 6 f 6 1. Rewriting (6) using
(7) yields
2

Z
D�x

~wT ~wtJ dndgdfþ 2�DI ¼
Z

n¼0

~wT bA1w ~w� 2�bF V
w

� �
dgdfþ

Z
n¼1

~wT �bA1w ~wþ 2�bF V
w

� �
dgdf

þ
Z

g¼0

~wT bA2w ~w� 2�bGV
w

� �
dndfþ

Z
g¼1

~wT �bA2w ~wþ 2�bGV
w

� �
dndf

þ
Z

f¼0

~wT bA3w ~w� 2� bH V
w

� �
dndgþ

Z
f¼1

~wT �bA3w ~wþ 2� bH V
w

� �
dndg: ð8Þ
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3.1. Boundary conditions

In order to simplify the analysis we will only study the boundary term at n ¼ 0 and disregard other bound-
ary terms. Then equation (8) reduces to
Table
The nu

Sub-/s
Sub-/s
2

Z
D�n

~wT ~wtJ dndgdfþ 2�DI �
Z

n¼0

~wT bA1w ~w� 2�bF V
w

� �
dgdf ¼ 0: ð9Þ
We rotate bA1 to diagonal form using X T bA1wX ¼ K1 so that,
K1 ¼ diagðun; un; un; un þ a; un � aÞ; ð10Þ
where un ¼ ðnxu1 þ nyu2 þ nzu3Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y þ n2

z

q
is the normal component (not necessarily outward pointing) of

the velocity through the boundary and a is the speed of sound.
Define X T ~w ¼ ~c, i.e ~c ¼ ð~c1;~c2;~c3;~c4;~c5ÞT are the characteristic variables and let X bF V

w ¼ bF V
c . Note thatbF V

w ¼ ð0; bF V
2 ;
bF V

3 ;
bF V

4 ;
bF V

5 Þ
T. However, bF V

c will be non-zero everywhere. Then,
2

Z
D�n

~wT ~wtJ dndgdfþ 2�DI �
Z

n¼0

~cTðbK1~c� 2�bF V
c Þdgdf ¼ 0: ð11Þ
The aim is to use boundary conditions such that a bound on w is obtained. The number of boundary condi-
tions we are allowed to use, are given in Table 1 (see [2,5]).

3.2. Characteristic far-field boundary conditions

There are four different cases, supersonic/subsonic inflow/outflow, with different number of positive eigen-
values of K1. For supersonic inflow (un > a) there are 5 positive eigenvalues; supersonic outflow (un < �a), 0
positive; subsonic inflow (0 < un < a), 4 positive; subsonic outflow (�a < un < 0), 1 positive. For the Navier–
Stokes equations we should use five conditions at an inflow and four at an outflow to bound the following
term (see for example [2]).
�
Z

n¼0

~cT bK1~c� 2�F V
c

� �
dgdf: ð12Þ
We split K1 ¼ Kþ1 þ K�1 holding the positive and negative eigenvalues, respectively, and continue to study the
following boundary conditions for supersonic inflow, subsonic inflow and supersonic outflow:
abKþ1 ~c� �bF V
c ¼ gc; or equivalently; abAþ1ww� �bF V

w ¼ g; ð13Þ

where we define bAþ1w ¼ X bKþ1 X T and a is a scalar to be determined for well-posedness. Consider the simplified
energy where all terms that do not contribute to a growth of the solution are omitted:
kwk2
t 6

Z
n¼0

~cTðbKþ1 ~c� 2�bF V
c Þdgdf:
We use the boundary condition (13),
kwk2
t 6

Z
n¼0

~cTðbKþ1 ~c� 2�bF V
c Þdgdf� 2

Z
n¼0

~cTðabKþ1 ~c� �bF V
c � gcÞdgdf ð14Þ
and assume that g ¼ 0. (We multiply the last integral by 2 to precisely cancel the viscous flux.) That leads to,
1
mber of boundary conditions to be specified at different flow cases and space dimensions (D) for the Navier–Stokes equations

3D 2D 1D

upersonic inflow 5 4 3
upersonic outflow 4 3 2
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kwk2
t 6 ð1� 2aÞ

Z
n¼0

~cT bKþ1 ~c; ð15Þ
which means that kwk2
t is bounded if a P 1=2. It remains to show that the proposed conditions are the min-

imal number that bound the solution. If not, they do not constitute a well-posed set of boundary conditions.
In the supersonic inflow case all five eigenvalues of K1 are positive; (13) leads to five boundary conditions,

which is correct. In the case of supersonic outflow Kþ1 ¼ 0 which leads to the boundary conditions ��F V ¼ g
where the first component is 0. Hence, we have four boundary conditions, which is the correct number. For
subsonic inflow/outflow it is not immediately obvious since they are the sum of two rank deficient conditions.
However, it is shown in Appendix A that for a subsonic inflow, (13) constitutes five boundary conditions,
which is correct. On the other hand, if we use (13) at a subsonic outflow boundary, we would enforce five lin-
early independent boundary conditions, which is one too many. In that case, we drop one condition and show
that the remaining four bound the solution. We also introduce the auxiliary matrices bA0 and bK 0 that impose an
extra linearly dependent condition on the remaining equation. (A necessary requirement to later prove stabil-
ity for the SBP–SAT discretization.) Note also that data must obey the same linear dependence, which is dis-
cussed in Appendix A. We summarize these results in the following proposition.

Proposition 3.1. Let X T
i
bAiwX i ¼ Ki where Ki ¼ diagðun; un; un; un þ a; un � aÞ, i ¼ 1; 2; 3 and

un ¼ ðvxu1 þ vyu2 þ vzu3Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y þ v2

3

q
for v ¼ n; g; f, respectively. Define ðbK00Þ5;4 ¼ �ðun þ aÞ and the

remaining components are set to 0 and similarly, ðbK01Þ4;5 ¼ �ðun � aÞ. Then at each boundary we have the
following sets of linearly well-posed boundary conditions to Eq. (2):
At n ¼ 0; aðbKþ1 þ bK00Þ~c� �bF V
c ¼ gc

1; n ¼ 1; aðbK�1 þ bK01Þ~c� �bF V
c ¼ gc

2:

At g ¼ 0; aðbKþ2 þ bK00Þ~c� �bGV
c ¼ gc

3; g ¼ 1; aðbK�2 þ bK01Þ~c� �bGV
c ¼ gc

4:

At f ¼ 0; aðbKþ3 þ bK00Þ~c� � bH V
c ¼ gc

5; f ¼ 1; aðbK�3 þ bK01Þ~c� � bH V
c ¼ gc

6;

ð16Þ
and a P 1=2.

Remark. For inflow and supersonic outflow it is obvious that the proposed boundary conditions reduce to the
characteristic Euler conditions as �! 0. In Appendix A, it can easily be seen that it holds also at a subsonic
outflow.

Remark. Above, we have shown well-posedness, i.e. boundedness of the solution with homogeneous bound-
ary data. However, it is possible to show boundedness of the solution with time-dependent non-zero boundary
data. That is usually referred to as strong well-posedness (see [23]).
3.3. Pressure boundary condition

The above boundary conditions are the characteristic boundary conditions. In practice, it is sometimes
desirable to specify the pressure at the outflow. This can be done in the same framework as the characteristic
boundary conditions. We propose to use the form (16) with a specific bK 0; bA0.
Proposition 3.2. Assume that the definitions in Proposition 3.1 hold, and introduce,
K00 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 k4

0 0 0 �k4 �k4

0
BBBBBB@

1
CCCCCCA; K01 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 �k5 �k5

0 0 0 k5 0

0
BBBBBB@

1
CCCCCCA; ð17Þ
where k4 ¼ ðun þ aÞ and k5 ¼ un � a. Then (16) is a linearly well-posed set of boundary conditions to Eq. (2), that

specify pressure and viscous gradients.
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Proof. See Appendix B. h
4. Discretization

The above analysis of well-posedness is based on an energy estimate of the solution. To discretize the equa-
tions we use high-order finite difference schemes that satisfies a Summation-by-Parts property (SBP) together
with the Simultaneous Approximation Term technique to impose boundary conditions. This allows us to
prove stability with discrete energy estimates that mimics the continuous analysis.
4.1. Difference operators

Discretize 0 6 x 6 1 using N þ 1 evenly distributed grid points with spacing h. Introduce the scalar grid
function vðtÞ ¼ ðv0ðtÞ; . . . ; vN ðtÞÞT. Then the first derivative is approximated by, P�1Qv, where P is a positive
definite (symmetric) matrix. P is used to define a discrete l2 equivalent norm, kvk2

P ¼ vTPv. In our particular
schemes P is diagonal which is a necessary requirement for stability on curvilinear grids. (See [19].) Q is
skew-symmetric except at the corners and Qþ QT ¼ diagð�1; 0; . . . ; 0; 1Þ ¼ B.

We will use Kronecker products (denoted �) to formulate our scheme (see for example [25] for a definition).
Let solution field be uijkl where the indices represent variable, n; g and f index. The last index ranges between 1
and 5. The spatial indices between, 0; . . . ; nn, 0; . . . ; ng and 0; . . . ; nf. Order a vector u ¼ ðu0001; u0002; . . . ;
unn;ng;nf;5ÞT. The finite difference matrices are
Dn ¼ ðIf � Ig � Dn � I5Þ; Dg ¼ ðIf � Dg � In � I5Þ; Df ¼ ðDf � Ig � In � I5Þ:

All submatrices appearing in the first position are of size ðnf þ 1Þ � ðnf þ 1Þ, the second position
ðng þ 1Þ � ðng þ 1Þ, the third position ðnn þ 1Þ � ðnn þ 1Þ and the fourth position 5 · 5. I with subscript de-
notes an identity matrix. We will also need,
Bn ¼ ðIf � Ig � Bn � I5Þ; Bg ¼ ðIf � Bg � In � I5Þ; Bf ¼ ðBf � Ig � In � I5Þ;

where Bn;g;f ¼ diagð�1; 0; . . . ; 0; 1Þ with appropriate sizes. (c.f Section 4.1 for the definition.) In the same
way,
Qn ¼ ðIf � Ig � Qn � I5Þ; Qg ¼ ðIf � Qg � In � I5Þ; Qf ¼ ðQf � Ig � In � I5Þ;
Pn ¼ ðIf � Ig � P n � I5Þ; Pg ¼ ðIf � P g � In � I5Þ; Pf ¼ ðP f � Ig � In � I5Þ;
Png ¼ PnPg; Pgf ¼ PgPf; Pnf ¼ PnPfP ¼ PnPgPf:
We define E0 ¼ diagð1; 0; 0; . . .Þ and E1 ¼ diagð. . . ; 0; 0; 1Þ with sizes consistent with their appearances in the
Kronecker products. Moreover, E0n ¼ ðIf � Ig � E0Þ and E1n;E0;g; . . . are defined similarly. Finally, we intro-
duce the norm uTPu ¼ kuk2.

Remark. Note that the Kronecker products used is merely a theoretical tool. When implementing the scheme
one may view the different operators in a Kronecker product as operating in their own dimension, i.e on a
specific index. To compute Dgu, we view u as a field with four indices and the one-dimensional operator Dg will
operate on the second index since it appears at the second position in the Kronecker product for all
combinations of the other indices. That is exactly as one would normally code a finite difference scheme, i.e.
loop over n; f and variables.
4.2. Stability of the Navier–Stokes equations

We begin by deriving an energy estimate. All other boundaries are assumed to be stable with correct bound-
ary conditions (and will be omitted) except the one at n ¼ 0. We do not introduce the boundary conditions at
n ¼ 0 initially. They will be derived through the stability analysis and introduced as penalty terms.

Denote by uðtÞ the solution vector with components uijklðtÞ (ordered as described previously) approximating
the exact solution ulðni; gj; fk; tÞ where ul is the component of the variables in conservative form. In the same
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manner we define the inviscid flux vectors, FI;GI;HI and the viscous flux vectors FV;GV;HV with components
FI,ijkl, etc. Finally, Ju has components Jðni; gj; fkÞuijkl. Note that J is positive for all i,j,k. Then,
ðJuÞt þDnðFI � �FVÞ þDgðGI � �GVÞ þDfðHI � �HVÞ ¼ 0: ð18Þ
As in the continuous case we transform to primitive variables and freeze the coefficients. Apply the symme-
trizing matrices to obtain,
ðJwÞt þDnðFI
w � �FV

wÞ þDgðGI
w � �G

V
wÞ þDfðHI

w � �HV
wÞ ¼ 0; ð19Þ
where the exact form of the viscous fluxes in curvilinear coordinates can be found in [6]. The derivatives in the
viscous fluxes are computed with Dn, Dg and Df. We now apply the energy method to (18).
wTPðJwÞt þ wTQnPgfðFI
w � �FV

wÞ þ wTQgPnfðGI
w � �G

V
wÞ þ vTQfPngðHI

w � �HV
wÞ ¼ 0
or,
k
ffiffiffi
J
p

wk2

t þ wTBnPgfðbA1ww� 2�FV
wÞ þ wTBgPnfðbA2ww� 2�GV

wÞ þ wTBfPngðbA3ww� 2�HV
wÞ þ 2�DI ¼ 0:

ð20Þ

We define bAiw ¼ ðIf � Ig � If � AiwÞ. DI denotes a quadratic term in the first-derivative difference approxima-
tions of the solution as in (8), and can be proven positive semi-definite. In fact, Eq. (20) corresponds exactly
to (8). Bn;g;f picks out the boundary terms in each direction. Only one of the 6 boundary terms will be non-
zero at each boundary. To keep the algebra to a minimum we focus on n ¼ 0 and disregard the boundary
terms:
k
ffiffiffi
J
p

wk2

t � wTPgfðbA1ww� 2�FV
wÞjn¼0 þ 2�DI ¼ 0:
We transform the boundary term to characteristic form with
P5

m¼1X lmwijkm ¼ cijkl andP5
m¼1X lm

bF V ;ijkm
w ¼ ~GV ;ijkl

c ,
k
ffiffiffi
J
p

wk2

t þ cTPgfðbK1c� 2�~GV
c Þjn¼0 þ 2�DI ¼ 0;
or, stated as a Kronecker product,
k
ffiffiffi
J
p

wk2
t � cTðE0 � P g � P f � K1Þcþ 2�cTðE0 � P g � P f � I5Þ~GV

c þDI ¼ 0: ð21Þ
We define Kþ1 ¼ ðIn � Ig � If � Kþ1 Þ. For inflow and supersonic outflow we construct a term,
penalty ¼ 2rI cTE0n PgfK
þ
1 c� gI

c

� �� �
þ 2�rV cTE0nPgfðGV � gV

c Þ: ð22Þ
that is zero to within truncation error. If (22) is added to (21) the energy may be bounded for certain choices of
rI and rV. To prove stability it is sufficient to consider the case gI

c ¼ gV
c ¼ 0. We obtain,
k
ffiffiffi
J
p

wk2
t � ð1þ 2rIÞcTðE0n � P g � P f � Kþ1 Þc� cTðE0n � P g � P f � K�1 Þc

þ 2ð1� rV Þ�cTðE0n � P g � P f � I5Þ~GV
c þ 2�DI ¼ 0: ð23Þ
It is clear from (23) that rI
6 �1=2 and rV ¼ 1 bounds the energy. Moreover, the penalty term in (22) can be

written as
penalty ¼ �2rV E0nPgfðaKþ1 c� �GV
c � gcÞ; ð24Þ
where a ¼ � rI

rV and gc ¼ ðKþ1 gI
c þ gV

c Þ. Eq. (24) shows that the penalty terms are exactly the boundary condi-
tion proposed for super- and subsonic inflow and supersonic outflow. The conditions for stability require
a P 1=2 which is in accordance with the theory for well-posedness.

For subsonic outflow we replace Kþ1 with Kþ1 þ K0 and stability follows from the same analysis resulting in
the same conditions on the penalty parameters rI and rV. This can be realized in the following way. If the
equation is split into its five components and the analysis carried out for the first four, i.e. for a reduced
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K+, K 0 will only introduce a change in the 5th equation making it linearly dependent of the first four. If those
are bounded, the 5th equation can shown to be bounded in a similar way as in the continuous case.

Having derived penalty terms to be added to the energy and shown that the proposed penalties enforces the
correct boundary conditions, we return to the original system. We obtain,
Table
Stable

n; g; f ¼
rI

0 6 �
ðJwÞt þDnðFI
w � �FV

wÞ þDgðGI
w � �G

V
wÞ þDfðHI

w � �HV
wÞ

¼ P�1
n E0nðrI bAin

1wðw� gI
wÞ þ rV �ðFV

w � gV
wÞÞ; ð25Þ
where bAin;þ
1w denotes bAþ1w on inflows and supersonic outflows, or bAþ1w þ bA01w on subsonic outflows. (in signifying

that it is the inflow part of bA1w.) Similarly, we define bAin;�
1w as bA�1w or bA�1w þ bA 01w on subsonic outflow. Finally,

we state the entire non-linear scheme with penalty terms for all boundaries:
ðJuÞt þDnðFI � �FVÞ þDgðGI � �GVÞ þDfðHI � �HVÞ

¼ P�1
n E0nðrI

0
bAin;þ

1 ðw� gIÞ þ rV
0 �ðFV � gVÞÞ þ P�1

n E1nðrI
1
bAin;�

1 ðw� gIÞ þ rV
1 �ðFV � gVÞÞ

þ P�1
g E0gðrI

0
bAin;þ

2 ðw� gIÞ þ rV
0 �ðG

V � gVÞÞ þ P�1
g E1gðrI

1
bAin;�

2 ðw� gIÞ þ rV
1 �ðG

V � gVÞÞ

þ P�1
f E0fðrI

0
bAin;þ

3 ðw� gIÞ þ rV
0 �ðHV � gVÞÞ þ P�1

f E1fðrI
1
bAin;�

3 ðw� gIÞ þ rV
1 �ðHV � gVÞÞ: ð26Þ
The penalty parameters that lead to a stable scheme are listed in Table 2. The marginal values rI
0 ¼ �1=2 and

rI
1 ¼ 1=2 correspond to the minimally dissipative case and rI

0 ¼ �1 and rI
1 ¼ 1 are equivalent to specifying the

total fluxes.

Remark. Note also that there is an ambiguity in the definition of the matrices bA1;2;3. In the linear theory we
assumed that they were constant but in the non-linear computation they are not. Hence, they may either be
constructed from data, from the solution or a combination of both. We stress that any of these are valid in the
linear sense and lead to a stable scheme. Our computational experience indicates, that for smooth solutions the
choice is less important and the scheme is stable for the all the different choices. However, we choose them to
be the Roe-averages, i.e. bF IðuÞ � bF IðgiÞ ¼ bA1ðu; gIÞðu� gIÞ, which may be advantageous in an extension to
allow for non-smooth solutions.

Remark. An important property of the non-linearity is that the boundary conditions are applied locally. It is
not necessary to a-priori specify if it is a sub- or supersonic inflow or outflow. The choice of eigenvalues is a
local operation at each gridpoint on the boundary and in the case of subsonic outflow, the auxiliary matrix is
added.

Remark. The symmetric form of the linearized equations serves as an analytical tool to derive well-posed
boundary conditions. In a program it is more convenient to transform the boundary terms to the characteristic
form directly from the conservative formulation. See for example [26].

Remark. In [9], a set of boundary conditions with the special choice a ¼ 1 were derived. They use the penalty
technique in the context of spectral methods. However, with a ¼ 1 they have less flexibility in the choice of
penalty parameters.
5. Computations

The code was shown to have global order of accuracy 3, 4 and 5 in [22].
2
choices of penalty parameters

0 n; g; f ¼ 1

1
2 rV

0 ¼ 1 rI
1 P 1

2 rV
1 ¼ �1
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5.1. Vortex hitting outflow boundary

In realistic computations it is common that flow structures are swept downstream and approach an outflow
boundary that ideally should be totally transparent in order to model the free space. So far, we have addressed
the question of choosing boundary conditions and we have proposed a well-posed set. This means that what-
ever data we choose to supply, there is a unique solution. If we want the outflow to mimic free space we have
no choice but to supply it with the exact free space solution. However, that solution is rarely known. We have
to guess the data to the best of our knowledge and hence our solution will deviate from the true free space
solution. The mismatch will appear as waves reflecting from the outflow boundary. With given ‘‘erroneous’’
data, the boundary conditions may be more or less reflective. The present choice can be shown to be a low-
order Engquist–Majda condition, see [27].

To test the stability of the outflow boundary conditions, we will study a case where an isentropic vortex hits
the outflow boundary. The vortex is an analytical solution to the inviscid Euler equations:
q ¼ 1� ðx� x0Þ � ðMtÞ2 � ðy � y0Þ
2
; u ¼ M � dðy � y0Þ

2p
expðf =2Þ;

v ¼ dðx� x0 �MtÞ
2p

expðf =2Þ; f ¼ 1� ððx� x0Þ �MtÞ2 � ðy � y0Þ
2
;

p ¼ qc

c
:

ð27Þ
The parameter d is the vortex strength and Ma is the Mach number. Unless otherwise stated we use d ¼ 0:5. In
the case of the Navier–Stokes equations it will dissipate and deviate from the inviscid solution.

We will compute two different cases. The first will use the Euler solution as boundary data. This is not the
exact solution for the Navier–Stokes equations and the difference increase with decreasing Reynolds number
and longer time. The other test case uses homogeneous free-stream boundary data on the outflow. This is of
course very far from the free-space solution when the vortex hits the boundary.

We use a Cartesian grid on x ¼ 0; . . . ; 10; y ¼ 0; . . . ; 20, with 101 · 201 grid points. Reynolds number is 500
and the Mach number is 0.5. The vortex is placed at x ¼ 5; y ¼ 10 at t = 0, see Fig. 1. We run the computations
until t = 20. In an inviscid calculation, the center of the vortex would be at x ¼ 15, well outside the compu-
tational domain. Inside the computational domain the solution would be very close to free-stream. In the
Navier–Stokes case it will be very similar although the vortex should have dissipated somewhat. Hence, we
compute the maximum deviation from free-stream as a measure of the sizes of the reflections on the outflow
boundary. In neither of the computations is artificial dissipation used (see Fig. 2).

In Table 3, we list the free-stream values and the maximum deviation from free-stream in the initial con-
ditions. We use the deviations in each variable at t = 0 to normalize the deviations from free stream at
t = 20, as a measure of the relative errors of the reflections. To show what numerical errors the numerical
scheme itself produces we compute the vortex solution using the Euler equations, the exact solution as
boundary data and a third-order accurate scheme. The errors at t = 20 when the vortex has passed through
the boundary is displayed in Table 4. As is seen the numerical errors even for a third-order scheme are very
small on this grid. The characteristic boundary conditions are virtually transparent and the vortex passes
through the boundary with very small reflections when exact data are used. For completeness, we also
include convergence studies in Table 5 for the third- and the fifth-order schemes at t = 20 (the two schemes
used below).

Next, we turn to the first test case for the Navier–Stokes equations. We compute the solution from
t ¼ 0� 20 with the third-order scheme using the Euler solution as boundary data. Note that we do not have
the exact data. The errors due to reflections at the boundary are shown in Table 6. Although the boundary
data differ from the exact free-stream solution, the reflections are small.

The final and most severe test for the boundary conditions is the one with free-stream values as boundary
data. The numerical solution is remarkably stable just as the theory predicts and the reflective errors are dis-
played in Table 7. The absolute level of the errors are of the same order for all variables and smaller than the
initial disturbances. The initial deviation in q is an order of magnitude smaller than the other variables imply-
ing a large relative error in q at t = 20.
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Fig. 1. The initial condition for q.
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Fig. 2. q at t = 20 with free-stream boundary data. Note that scale is different from Fig. 1.

Table 3
Free-stream values of variables and initial perturbation from free-stream

Variable Free-stream Perturbation t = 0

q 1 0.009
qu 0.5 0.08
qv 0 0.08
e 1.91 0.05

Table 4
Maximum errors and relative errors for the Euler vortex at t = 20 computed with Euler equations and exact boundary data

Variable Absolute error Relative error (%)

q 1.5e � 5 0.17
qu 3.2e � 5 0.04
qv 9.2e � 5 0.12
e 5.1e � 5 0.10
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Table 5
Convergence study for the Euler vortex at t = 20 computed with Euler equations and exact boundary data

Grid e3 q3 e5 q5

26 · 51 4.0e � 4 – 6.2e-4 –
51 · 101 4.7e � 5 3.1 1.8e � 5 5.2
101 · 201 5.6e � 6 3.1 4.1e � 7 5.4

Table 6
Perturbation from free-stream at t = 20, computed using the Navier–Stokes equations

Variable Absolute error Relative error (%)

q 1.3e � 4 1.4
qu 1.1e � 4 0.13
qv 2.1e � 4 0.26
e 2.7e � 4 0.54

Absolute value and percent of initial perturbation. Euler vortex boundary data.

Table 7
Perturbation from free-stream at t = 20, computed with the Navier–Stokes equations

Variable Absolute error Relative error (%)

q 3.7e � 3 41
qu 1.8e � 3 2.3
qv 2.1e � 3 2.6
e 8.4e � 3 17

Absolute value and percent of initial perturbation. Free-stream boundary data on outflow.
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We also obtained (almost) identical errors with the following numerical set-ups: (1) a (51 · 101)-grid for the
third-order method; (2) the 101 · 201-grid with the fifth-order scheme; (3) a (51 · 101)-grid and the fifth-order
scheme. This shows that the reflections are due to the mismatch of data and not numerical errors.

To test the sensitivity in the reflections with respect to vortex strength, we ran the third-order scheme with
vortex strengths d ¼ 0:25 and d ¼ 1:0 and concluded that the relative errors due to the reflections were of the
same order. As a test of robustness, we ran vortex strength d ¼ 5:0, which is so strong that backflow occurs.
The reflections are substantial with relative errors of order one, but the computation was perfectly stable and
no artificial dissipation was needed.

Finally, we tested the effect of the parameter a in the boundary condition (and d ¼ 0:5). With a ¼ 0:5 and
a ¼ 1:0 the reflections were almost identical, while with a ¼ 2 the errors were notably larger. Again, both com-
putations were stable without addition of artificial dissipation.

Remark. The purpose of the above tests are twofold. Firstly, to show that the boundary treatment is very
robust. Secondly, to show the sizes of the reflections one obtains due to the mismatch of data. We stress that
the boundary conditions were not derived to be minimally reflective.
5.2. Vortex shedding behind cylinder

We will now compute the 3D solution to a cylinder in free-stream. We use a multiblock grid with
101 · 131 · 20 grid points in each of the five computational blocks, see Fig. 3. The z-axis is aligned with
the cylinder. Without going into details, we conclude that the interfaces can be treated in a stable manner
and refer to [14–16] and an upcoming article by the present authors. The wall boundary can also be treated
with a penalty technique but we postpone that discussion to a subsequent article.

We use Reynolds number 500, Mach number 0.5 and Prandtl number 0.72. Again, we want to demonstrate
the robustness of the far-field boundary conditions. We initialize the flow by inserting the Euler vortex (from
previous section) in front of the cylinder at x ¼ �2; y ¼ 0. The z-direction is periodic. The Euler vortex
initiates the vortex shedding. The free-stream is aligned with the x-axis for the initial condition. However,
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Fig. 3. The five-block computational grid for the cylinder.
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when the computation starts, we shift the direction of the free-stream to an angle of 10� in the xz-plane. This
change will only affect the interior solution via the boundary conditions. At first, the initial and boundary con-
ditions are incompatible and it is a severe test of the robustness. Indeed, this test poses no problem for the
numerical scheme. The solution for the qw variable (momentum in the z-direction) is shown in Fig. 4 at
t = 20 in the plane z ¼ 0. The upper and lower boundaries are incompatible initially, which produce the waves
Fig. 4. Left: qw at t = 20. Right: qw at t = 40.

Fig. 5. Left: qw at t ¼ 60. Right: qw at t = 80.
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aligned with the x-axis. However, the major effect of the incompatible data comes from the inflow boundary.
The wave front from the inflow is approximately at x ¼ 5 at t = 20 since the Mach number is 0.5.

In Figs. 4–6, the time evolution for qw is shown. The strong initial disturbance, as well as the wave front,
travels downstream and eventually disappears through the outflow boundary.

Another feature with the present boundary procedure, is the possibility of handling inflow and outflow
along the same boundary. This is exemplified in Fig. 7 where qv (momentum in the y-direction) takes both
positive and negative values along the top and bottom boundaries. The sizes of the flow structures are exag-
gerated since the contours are chosen to highlight the small disturbances.

In this boundary treatment, we compute the eigenvalues locally and set the boundary conditions
accordingly.

This test case is chosen to demonstrate the robustness of the boundary conditions. We are aware that in
order to accurately compute the vortex shedding care has to be taken in the choice of initial and boundary
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Fig. 6. qw at t ¼ 100.
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data. However, if we run this case for sufficiently long time the initial transients will eventually decay and a
stable vortex shedding will be observed. In realistic applications, this is a common way to compute the solu-
tion and the most critical part, from a stability perspective, is the initial phase with incompatible data. With
this example, we have shown that even with a high-order method this is a feasible approach.

6. Conclusions

We have derived a well-posed set of boundary conditions, which is a generalization of the boundary con-
ditions derived in [3,9]. In the subsonic outflow case we derived a different formulation of the boundary con-
ditions that enforces the four conditions on all five equations. For completeness, we also derived a novel set of
subsonic outflow conditions using the pressure.

We used these boundary conditions in high-order SBP–SAT finite difference schemes and the main results
in this article was a stability proof for the full three-dimensional Navier–Stokes equations in general curvilin-
ear coordinates. These schemes have theoretically second-,third-, fourth and fifth-order accuracy.

The robustness of the boundary conditions was tested in a two-dimensional case where a vortex hit a sub-
sonic outflow boundary. Different boundary data was chosen, which induced reflections of different sizes. In
all cases the code was stable.

Finally, we computed the three-dimensional vortex shedding behind a cylinder in an oblique free-stream.
We showed that the large structures pass out through the outflow boundary.

The boundary treatment does not require that a boundary is assigned to be either inflow or outflow, sub or
supersonic. Instead, the boundary type is determined by the local eigenvalues. This were also highlighted in the
computations, where both subsonic inflow and outflow occur on the same boundary.
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Appendix A. Subsonic inflow and outflow

Let, a denotes the speed of sound and � ¼ M=Re in the non-dimensional variables. v ¼ ðq; u1; u2; u3; pÞT are

the primitive variables. Using the parabolic symmetrizer derived in [24], the following non-dimensional vari-

ables are obtained, ~wT ¼ affiffi
c
p

q~q ; ~u1; ~u2; ~u3;� affiffiffiffiffiffiffiffiffiffi
cðc�1Þ
p ~q

qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

c�1
1
qa ~p

q� �
.

To simplify the notation, we show this in a Cartesian setting. But we stress that the analysis holds in the
curvilinear case as well (see [6] for a derivation of the equations in a curvilinear system). The proposed bound-
ary condition (on the left boundary) in the symmetrized system is
abAþ1 ~w� �bF V
w ¼ g;
where g ¼ ðg1; g2; g3; g4; g5Þ
T. (On the right boundary bAþ1 would be replaced by bA�1 .) In the symmetrized system

we have bF V
w ¼ ð0; F V

2 ; F
V
3 ; F

V
4 ; F

V
5 Þ

T. Since we are considering the Cartesian case, we have bA1 ¼ A1 andbF V
w ¼ F V

w . The eigenvectors of A1 are found as columns in,
X ¼

0 0 �
ffiffiffiffiffiffi
c�1
c

q
1ffiffiffi
2c
p 1ffiffiffi

2c
p

0 0 0 1ffiffi
2
p � 1ffiffi

2
p

1 0 0 0 0

0 1 0 0 0

0 0 1ffiffi
c
p

ffiffiffiffiffiffi
c�1
2c

q ffiffiffiffiffiffi
c�1
2c

q

0
BBBBBBBB@

1
CCCCCCCCA
;

such that X TA1X ¼ K1 ¼ diagðu1; u1; u1; u1 þ a; u1 � aÞ. We begin by considering the case a ¼ 1.
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For a subsonic inflow (a > u1 > 0) the first four eigenvalues of K1 are positive. If we diagonalize the bound-
ary condition we obtain Kþ1 c� �X TF V

w ¼ X Tg ¼ gc. It can easily be shown that the five conditions are linearly
independent.

The case of subsonic outflow ð0 > u1 > �aÞ is more difficult. We start by studying the proposed boundary
condition, Aþ1 u� �F V

w ¼ g, in the symmetric system. Again, we apply the transformation to diagonal form,
� �F V
3 ¼ g3;

� �F V
4 ¼ g4;

� �F V
5 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
g1 þ g5;

ðu1 þ aÞ ~u1 þ
ffiffiffi
c
p

~u2 þ
ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
~u5

� �
� � ffiffiffi

c
p

F V
2 þ

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
F V

5

� �
¼ g1 þ

ffiffiffi
c
p

g2 þ
ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
gI

5

� �
;

� � � ffiffiffi
c
p

F V
2 þ

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
F V

5

� �
¼ g1 �

ffiffiffi
c
p

g2 þ
ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
g5

� �
:

ð28Þ
In this case, we should have four boundary conditions. The first two equations are independent of the last
three as before. However, the last three equations are linearly independent and the proposed set of boundary
conditions overspecify the partial differential equation. One remedy is simply to remove the fifth condition and
prove that the solution is bounded anyway. This approach is taken in [3].

We want to keep the structure of the boundary conditions and hence we will derive a new fifth condition
based on the third and fourth. (One way or another the linear dependence has to be expressed in the scheme.)
We change the notation for all the boundary conditions by introducing new variables and expressions on the
data:

P5
j¼1ðX TÞijðF V

wÞ ¼ Gi;
P5

j¼1ðX TÞijðcÞ ¼ ci and
P5

j¼1ðX TÞijðgÞ ¼ gC
i . We propose the well-posed set of

boundary conditions,
� �G1 ¼ gC
1 ;

� �G2 ¼ gC
2 ;

� �G3 ¼ gC
3 ;

ðu1 þ aÞc4 � �G4 ¼ gC
4 :
We note that �G4 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
c� 1
p

G3 ¼ G5. Hence, the following condition merely constitutes a linear combination
of the first four:
�ðu1 þ aÞ~c4 � �G5 ¼ �gC
4 þ 2

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
gC

3 ¼ gC
5 : ð29Þ
The last equality serves as a definition. This relation is added as a fifth equation to complete the form of the
boundary conditions. The factor �ðu1 þ aÞ is put in a 5 by 5 matrix in the 5,4 position, which is then trans-
formed back to the symmetric system to form a matrix A 0. This can readily be done in a code and we do not
derive the exact form of A 0.

Remark. Note that the data in the characteristic system is compatible by construction, i.e. gC
5 is given by

gC
1 ; . . . ; gC

4 . However, it may not be as obvious that data are still compatible if the outflow condition is
specified as
ðAþ þ A0Þðu� gIÞ � �ðF V � gV Þ ¼ 0; ð30Þ

where the gV

1 ¼ F V
1 ¼ 0. But since both variables and data are subject to the same linear operations (that is a

multiplication by XT), it is clear that they will be compatible.

Remark. In the construction of the penalty terms, we split the treatment into an inviscid and a viscous part
and choose appropriate data for each part. We stress that this is for convenient programming and that the
boundary conditions actually imposed are precisely the ones given above. The effect of the penalty terms will
not force the solution to satisfy the inviscid data and the viscous data, but their sum. In practice we choose
data for gI and gV separately in all positions. The boundary treatment will automatically pull out the relevant
part of the data and enforce the correct boundary conditions as shown above.
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Finally, we need to show for well-posedness that the proposed boundary conditions bound the solution.
The boundary terms appearing in the energy estimate at x ¼ 0 (the left boundary) is
0 ¼ k~wk2
t �

Z
x¼0

cTðK1c� 2�X TF V Þdy dz ¼ k~wk2
t �

Z
x¼0

X5

i¼1

1

ki
ððkici � �GV

i Þ
2 � ð�GV

i Þ
2Þdxdz: ð31Þ
The negative boundary terms need to be supplied with boundary conditions. For i ¼ 1; 2; 3, ki ¼ u1 < 0, the
viscous flux is specified bounding correct terms. For i ¼ 4, we impose k4c4 � �GV

4 ¼ 0 (if homogeneous bound-
ary data are assumed). With those boundary conditions (31) becomes
k~wk2
t �

Z
x¼0

X3

i¼1

1

ki
ðkici � �GV

i Þ
2

� �
þ 1

k5

ðk5c5 � �GV
5 Þ

2

 
� 1

k4

ð�GV
4 Þ

2 � 1

k5

ð�GV
5 Þ

2

�
dxdz: ð32Þ
The only term in (32) that may have the wrong sign is
ð�GV

5
Þ2

k5
. We can use the bounded term 1

k4
ð�GV

4 Þ
2 to help.

With k4 ¼ u1 þ a > 0 and k5 ¼ u1 � a and using the last condition (29), i.e. �k4c4 þ �GV
5 ¼ 0, we may write
1

k4

ð�GV
4 Þ

2 þ 1

k5

ð�GV
5 Þ

2 ¼ 1

u1 þ a
ð�ðu1 þ aÞc4Þ2 þ

1

u1 � a
ððu1 þ aÞc4Þ2 ¼ ðu1 þ aÞ2c2

4ð
u1 þ aþ u1 þ a
ðu1 � aÞðu1 þ aÞÞ

¼ ðu1 þ aÞ2c2
4

2u1

u2
1 � a2

� �
> 0:
The last inequality is due to u1 < 0 (subsonic outflow at the left boundary x ¼ 0). Since the term is positive we
have a bound on the solution.

Remark. We assumed that a ¼ 1 in the boundary conditions. But it is obvious that the linear dependence
introduced is valid for any a as long as a multiplies both A+ and A 0.
Appendix B. Well-posedness specifying pressure and viscous fluxes

For simplicity we consider the Navier–Stokes equations on the unit cube in Cartesian form. We will study a
subsonic outflow at x ¼ 0 and assume that all other boundaries do not contribute to a growth of the solution.
As before, we want the boundary conditions to take the form,
aðAþ þ A0Þw� �bF V ¼ gw:
Instead of using the ingoing characteristic we will now use the pressure, which will determine the form of
A 0. We transform the boundary condition to diagonal form by multiplying from left with XT defined in
Appendix A,
aðKþ þ K0Þc� �bGV ¼ gC;
where
c ¼ ~u3; ~u4;�
ffiffiffi
c
p

affiffiffiffiffiffiffiffiffiffiffi
c� 1
p

q
~q;

ffiffiffi
c
p

~u1 þ
ffiffiffi
c
p

qa
~p;� ffiffiffi

c
p

~u1 þ
ffiffiffi
c
p

qa
~p

� �T

: ð33Þ
The energy equation before application of boundary conditions has the form
kwk2
t 6

Z
x¼0

cTðK� þ KþÞc� 2�cT bGV dy dz: ð34Þ
In this case u1 < 0 and Kþ ¼ diagð0; 0; 0; uþ a; 0Þ. If we want pressure to be the variable appearing in the
boundary condition we note that
c4 þ c5 ¼
2
ffiffiffi
c
p

qa
~p: ð35Þ
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Hence, we propose the following four boundary conditions on component form,
� �G1 ¼ gC
1 ; ð36Þ

� �G2 ¼ gC
2 ; ð37Þ

� �G3 ¼ gC
3 ; ð38Þ

ak4ðc4 þ c5Þ � �G4 ¼ gC
4 : ð39Þ
We use these four conditions to derive a fifth as a linear combination,
�ak4ðc4 þ c5Þ � �G5 ¼ �gC
4 þ 2

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
gC

3 : ð40Þ

The next step is to show that this set bounds the energy (34). Write the energy in component form,
kwk2
t 6

Z
x¼0

k1c2
1 þ k2c2

2 þ k3c2
3 þ k4c2

4 þ k5c2
5 � 2�ðc1G1 þ c2G2 þ c3G3 þ c4G4 þ c5G5Þdy dz

6

Z
x¼0

k4c2
4 þ k5c2

5 � 2�ðc1G1 þ c2G2 þ c3G3 þ c4G4 þ c5G5Þdy dz: ð41Þ
Using (36)–(38), assuming homogenous data and omitting the bounded terms yields
kwk2
t 6

Z
x¼0

k4c2
4 þ k5c2

5 � 2�ðc4G4 þ c5G5Þdy dz:
Inserting (39) and (40) yields
kwk2
t 6

Z
x¼0

k4c2
4 þ k5c2

5 � 2aðc4k4ðc4 þ c5Þ � c5k4ðc4 þ c5ÞÞdy dz

¼
Z

x¼0

k4c2
4 þ k5c2

5 � 2aðc2
4k4 � c2

5k4Þdy dz ¼
Z

x¼0

ð1� 2aÞk4c2
4 þ ð1þ 2aÞk5c2

5 dy dz < 0: ð42Þ
The last inequality holds if a > 1=2. Note that this is the same condition as in the characteristic case. We con-
clude that at x ¼ 0,
K0 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 k4

0 0 0 �k4 �k4

0
BBBBBB@

1
CCCCCCA: ð43Þ
Remark. On a general boundary K 0 will take exactly the same form with the difference that the eigenvalues are
based on the normal velocity.
References

[1] Heinz-Otto Kreiss, Joseph Oliger, Comparison of accurate methods for the integration of hyperbolic equations, Tellus XXIV 3
(1972).
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